Pipeline Design Patterns | CONFIDENTIAL

DATA FACTORY
PIPELINE DESIGN PATTERNS

Orchestration • Activities • Parameters • Error Handling • Best Practices

Version 1.0 | January 2026

Table of Contents

1. Pipeline Fundamentals
Data Factory pipelines in Microsoft Fabric orchestrate data movement and transformation workflows. Understanding activity types, control flow, and execution patterns is essential for building robust data pipelines.
1.1 Pipeline Components
	Component
	Description
	Examples

	Activities
	Individual units of work in a pipeline
	Copy, Notebook, Dataflow

	Datasets
	Reference to data stores and structures
	Lakehouse, SQL, Files

	Parameters
	Input values passed at runtime
	process_date, source_path

	Variables
	Mutable values within pipeline scope
	row_count, status

	Control Flow
	Logic controlling execution sequence
	If, ForEach, Until

1.2 Activity Types
Data Movement
1. Copy Activity: Move data between sources and destinations
1. Optimized for bulk data transfer with parallel processing
Data Transformation
1. Dataflow Gen2: Low-code visual transformations
1. Notebook: Spark-based code transformations
1. Stored Procedure: SQL-based transformations
Control Activities
1. ForEach: Iterate over collection
1. If Condition: Conditional branching
1. Until: Loop until condition met
1. Wait: Pause execution
1. Set Variable: Assign values
External
1. Web Activity: Call REST APIs
1. Invoke Pipeline: Call child pipelines
1.3 Execution Dependencies
Control activity execution order through dependencies:
	Dependency
	Behavior

	Succeeded
	Next activity runs only if previous succeeded

	Failed
	Next activity runs only if previous failed

	Completed
	Next activity runs regardless of outcome

	Skipped
	Next activity runs if previous was skipped

2. Design Patterns
2.1 Pattern: Master-Worker
A master pipeline orchestrates multiple worker pipelines for modular, reusable design.
Structure
1. Master Pipeline: Orchestration logic, parameters, error handling
1. Worker Pipelines: Individual transformation tasks
1. Invoke Pipeline activity calls workers
Benefits
1. Modular design for reuse
1. Independent testing of components
1. Clear separation of concerns
1. Parallel execution of independent workers
Implementation
Master Pipeline:
 1. Set Variables (initialize)
 2. Invoke Worker 1 (Bronze to Silver)
 3. Invoke Worker 2 (Silver to Gold)
 4. Invoke Worker 3 (Gold to Reporting)
 5. Send Notification
2.2 Pattern: Medallion Pipeline
Dedicated pipelines for each medallion layer with dependencies.
Structure
Bronze Pipeline: Source ingestion
 -> Success triggers Silver Pipeline

Silver Pipeline: Transformation
 -> Success triggers Gold Pipeline

Gold Pipeline: Aggregation and serving
Implementation Considerations
1. Use pipeline triggers for automatic chaining
1. Pass parameters between pipelines for context
1. Implement idempotency at each layer
1. Enable restart from any layer
2.3 Pattern: Dynamic Pipeline
Single pipeline handles multiple sources using parameters and metadata.
Metadata-Driven Approach
1. Read configuration from metadata table
2. ForEach source in configuration:
 - Copy Activity with dynamic source/sink
 - Notebook with parameterized transformation
3. Log completion status
Benefits
1. Reduced pipeline proliferation
1. Centralized configuration management
1. Consistent processing across sources
1. Easy to add new sources without pipeline changes

3. Parameterization
Parameterization enables flexible, reusable pipelines that adapt to different contexts at runtime.
3.1 Parameter Types
	Type
	Scope
	Use Case

	Pipeline Parameter
	Passed at runtime
	process_date, environment, source_name

	Variable
	Mutable within pipeline
	row_count, loop_counter, status

	System Variable
	Built-in values
	Pipeline name, run ID, trigger time

	Global Parameter
	Workspace-wide
	Connection strings, environment config

3.2 Common Parameters
// Standard pipeline parameters
process_date: string // Date to process (YYYY-MM-DD)
environment: string // dev, test, prod
source_name: string // Source system identifier
is_full_load: boolean // Full vs incremental
debug_mode: boolean // Enable verbose logging
3.3 Dynamic Expressions
Use expressions to compute values dynamically:
Date Functions
@formatDateTime(utcnow(), 'yyyy-MM-dd')
@addDays(pipeline().parameters.process_date, -1)
@startOfMonth(utcnow())
String Functions
@concat(pipeline().parameters.source, '_', variables('suffix'))
@replace(item().filename, '.csv', '.parquet')
@toLower(pipeline().parameters.environment)
Conditional Logic
@if(equals(pipeline().parameters.is_full, true),
 'overwrite',
 'append')
3.4 System Variables
@pipeline().Pipeline // Pipeline name
@pipeline().RunId // Unique run identifier
@pipeline().TriggerType // Manual, Schedule, Tumbling
@pipeline().TriggerTime // Trigger timestamp
@pipeline().GroupId // Group run identifier

4. Error Handling
Implement robust error handling to ensure pipelines fail gracefully and provide actionable information.
4.1 Activity Retry Configuration
Configure retry behavior for transient failures:
	Setting
	Default
	Recommendation

	Retry Count
	0
	2-3 for transient errors

	Retry Interval (sec)
	30
	30-60 seconds

	Timeout
	7 days
	Set based on expected duration

4.2 Error Handling Pattern
Use Try-Catch pattern with conditional execution:
Pipeline Structure:
 ├── Try Scope
 │ └── Main Activities
 │ ├── Copy Data
 │ ├── Transform
 │ └── Validate
 │
 └── Catch Scope (On Failure)
 ├── Log Error
 ├── Send Alert
 └── Cleanup
4.3 Error Capture
Capture error details for logging and alerting:
@activity('CopyData').error.message
@activity('CopyData').error.errorCode
@activity('CopyData').output.errors
4.4 Alerting Pattern
On Pipeline Failure:
 1. Web Activity: Send Teams/Slack notification
 URL: Teams webhook URL
 Body: {
 "pipeline": "@{pipeline().Pipeline}",
 "runId": "@{pipeline().RunId}",
 "error": "@{activity('Main').error.message}"
 }

 2. Log to audit table
 3. Fail pipeline with clear error message

5. Control Flow Patterns
5.1 ForEach Pattern
Iterate over collections for parallel or sequential processing.
ForEach Activity:
 Items: @pipeline().parameters.source_list
 IsSequential: false (parallel)
 BatchCount: 20 (max parallel)

 Inside ForEach:
 Copy Activity:
 Source: @item().source_path
 Sink: @item().target_path
Sequential vs Parallel
1. Sequential: Dependencies between iterations, ordered processing
1. Parallel: Independent iterations, faster execution
1. Batch Count: Limit parallelism to avoid throttling
5.2 If Condition Pattern
Branch logic based on runtime conditions.
If Condition:
 Expression: @equals(pipeline().parameters.is_full_load, true)

 True Activities:
 - Truncate target table
 - Full copy

 False Activities:
 - Incremental copy with watermark
5.3 Until Pattern
Loop until condition is satisfied.
Until Activity:
 Expression: @equals(variables('status'), 'Complete')
 Timeout: 01:00:00

 Activities:
 1. Web Activity: Check external status
 2. Set Variable: Update status
 3. Wait: 60 seconds
5.4 Switch Pattern
Multiple branches based on expression value.
Switch Activity:
 On: @pipeline().parameters.source_type

 Cases:
 'SQL': Copy from SQL Server
 'API': Web Activity + Copy
 'FILE': Copy from blob

 Default: Fail with error

6. Pipeline Triggers
Triggers automate pipeline execution based on schedule, events, or dependencies.
6.1 Trigger Types
	Type
	Description
	Use Case

	Schedule
	Run at specified times
	Daily/hourly batch jobs

	Tumbling Window
	Time-slice based execution
	Time-partitioned processing

	Event
	Triggered by data events
	File arrival processing

	Manual
	On-demand execution
	Ad-hoc runs, testing

6.2 Schedule Trigger
Schedule: Daily at 2:00 AM UTC
Recurrence: Every 1 day
Start Time: 2024-01-01T02:00:00Z
End Time: None (continuous)

Time Zone: UTC
6.3 Tumbling Window
Process data in fixed time slices with retry support:
Window Size: 1 hour
Start Time: 2024-01-01T00:00:00Z
Delay: 15 minutes (wait for data arrival)
Retry: 3 attempts

// Parameters passed to pipeline
WindowStart: @trigger().outputs.windowStartTime
WindowEnd: @trigger().outputs.windowEndTime
6.4 Event Trigger
Trigger on file arrival in storage:
Event Type: Blob Created
Container: landing
Blob Path Begins: claims/
Blob Path Ends: .csv

// Parameters passed to pipeline
@triggerBody().fileName
@triggerBody().folderPath

7. Best Practices
7.1 Design Principles
1. Idempotency: Re-running produces same result
1. Atomicity: All or nothing execution
1. Observability: Comprehensive logging and monitoring
1. Modularity: Reusable, composable components
1. Resilience: Graceful handling of failures
7.2 Naming Conventions
	Element
	Convention
	Example

	Pipeline
	pl_[layer]_[source]_[target]
	pl_brz_claims_ingest

	Activity
	[type]_[description]
	copy_claims_to_bronze

	Parameter
	snake_case
	process_date

	Variable
	snake_case
	row_count

7.3 Performance Tips
1. Parallelize independent activities
1. Use ForEach with appropriate batch count
1. Set realistic timeouts
1. Enable staging for large data copies
1. Optimize DIU for Copy activities
7.4 Anti-Patterns to Avoid
1. Hard-coding values (use parameters)
1. Long monolithic pipelines (use master-worker)
1. Ignoring error handling
1. Missing logging and auditing
1. Excessive nested ForEach (performance impact)
1. Synchronous waits for long operations

Appendix: Document Information
	Document Title
	Pipeline Design Patterns

	Version
	1.0

	Last Updated
	January 2026

Page of
